Tuesday, December 11, 2007

A Second Wind...Applied vs Pure Science

This is a post I had back in August of 2006. It is the post that has had the most hits over the last 1+ years, so I thought I would re-post it. This goes along with the fact that this blog is now dedicated to my students and classes I teach, as we can extend on discussions from class or start discussions that we do not have time for in class. Feedback is needed, and this will provide yet another means for students to be involved in the world of science and all that comes with it. Let's get going!


A summer science research course I used to teach always had many good discussions about analysis techniques, the scientific method, and specific areas of research. A topic that always made an appearance was the debate over what type of research is more valuable, pure or applied. In particular, the class debate peaked when we traveled out to Fermilab to visit some of the facilities and labs. Prior to that visit, classes are normally close to split over which is more vital to the progress of science and the U.S. lead world research.

Pure science research is that work which is done in the pursuit of new knowledge. Scientists working in this type of research don’t necessarily have any ideas in mind about applications of their work. They may be testing an existing theory, they may have a new experimental technique they want to try, or they may literally stumble accidentally into a new area of discovery (many of the great discoveries in history occurred by accident, such as X-rays and penicillin). Encompassed in this realm is a good deal of theoretical research, such as those who are working on quantum mechanics, superstrings, theoretical cosmology, and many others.

Applied science research is that which is geared towards applications of knowledge and concrete results that are useful for specific purposes. Engineering is certainly an application of knowledge for finding practical solutions to specific problems. Research into instrumentation, new inventions, and new processes that may improve productivity in industry, as well as medical research geared towards the production of new drugs, are obvious examples of this type of research.

Fermilab, for example, houses a mammoth device that is used almost entirely for pure research in particle physics. Scientists look for new forms of matter, study fundamental forces between particles, test theories such as the Standard Model, and test new types of instrumentation. As an ideal example of ‘big’ science, students are wide-eyed when told the power bill is something like $10,000 per hour and that operating budgets, paid for by taxpayer dollars, run in the hundreds of millions (not to mention the billions of dollars that have been spent over the years to build the facility and the main experiments). My question for them is: Is it worth it?

On the surface, most people can think of better uses of billions of dollars. I’ve been asked countless times how scientists can justify the costs of facilities like Fermilab or the price-tag associated with sending another space probe to Mars. What about cures for cancer? New energy sources? Better sources of food that can be grown and used by the third-world? Are these not more important areas of study, especially when the answer to the question, “What good is a top quark?” is “I cannot think of a single application!” Certainly politicians are faced with such questions, and rightly so. We absolutely need to ask these questions and find priorities for limited resources and funding.

Politicians, of course, prefer applied science research. They would love to be able to go to their constituents with news of a new invention or discovery that will make life better, and, gee, since I supported the funding of the research I deserve to be re-elected. While applied science almost always wins out in a class vote of which is more important, as I argue in my last posting that thinking in terms of absolutes can limit progress, my conclusion is BOTH are absolutely essential for the progress of science as well as maintaining our status as a superpower. Pure science keeps new ideas and discoveries flowing. Progress in almost any field, be it industry, business, or medicine, depends on the amount of knowledge one has access to.

Continuing with Fermilab as our working example, it is true that a discovery such as a top quark almost certainly cannot yield a direct, beneficial application for mankind. But, in order to make that discovery, and what is not obvious to the general public, requires new technologies and breakthroughs that can often lead to spin-offs that revolutionize everyday life. The world of fast computation, massive data storage, and fast electronics has been built on the work that needed to be done to build Fermilab and discover the top quark. Applications of superconductivity took this phenomenon from a fascinating quantum state we can produce in the lab to the world of high-strength magnets necessary for steering particles at the speed of light. Little did anyone originally know that eventually someone would figure out that these same superconducting magnets can be used to create internal images of the body, now called MRI technology. This blog site is possible because of the pioneering computer network (both hardware and software) created by high energy physicists, who found it necessary to share data between experiments in the U.S. and Europe. And most people are unaware of the Cancer Treatment Center at Fermilab, that uses neutron beams created by the main accelerators. There are only four such centers in the U.S., and thousands of patients have been treated over the years.

The point is that pure science is absolutely essential. This type of science ensures that we keep pushing the envelope and continue our quest of deciphering Nature’s puzzles. It leads to the fringe and cutting edge science in all disciplines. While primary work may or may not be useful for the general public in the form of a physical device or process, history shows convincingly that whatever investment is made will usually be paid back (often many times over) in the form of spin-offs. I, for one, have no complaints of some of my tax money going towards a national lab such as Fermilab, or any other facility that promotes pure science research.

2 comments:

marie said...

Hi,

We have just added your latest post "A Second Wind...Applied vs Pure Science" to our Directory of Science . You can check the inclusion of the post here . We are delighted to invite you to submit all your future posts to the directory and get a huge base of visitors to your website.


Warm Regards

Scienz.info Team

http://www.scienz.info

Coach Outlet said...

Coach Outlet
Leading American designer and maker of luxury lifestyle handbags and accessories.Coach Outlet